1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
// represents the Ben Eater 8bit computer
`timescale 1us/1us
module eater_computer(
input wire clk_in,
output wire [7:0] debug_bus
);
/* verilator public_on */
tri [7:0] bus,
A_out,
B_out,
RAM_out,
INS_out
;
tri [3:0] PC_out;
logic A_to_bus, bus_to_A,
B_to_bus, bus_to_B,
INS_to_bus, bus_to_INS,
RAM_to_bus, bus_to_RAM,
ALU_to_bus,
PC_to_bus, bus_to_PC,
bus_to_MAR
;
assign debug_bus = bus;
/* verilator public_off */
eater_register A (
.clk_in(clk_in),
.en_store_in(bus_to_A),
.en_output_in(A_to_bus),
.data_in(bus),
.bus_out(bus),
.always_out(A_out)
// .data(bus)
);
eater_register B (
.clk_in(clk_in),
.en_store_in(bus_to_B),
.en_output_in(B_to_bus),
.data_in(bus),
.bus_out(bus),
.always_out(B_out)
// .data(bus)
);
assign bus[3:0] = INS_out[3:0];
eater_register INS (
.clk_in(clk_in),
.en_store_in(bus_to_INS),
.en_output_in(INS_to_bus),
.data_in(bus),
.bus_out(INS_out),
.always_out()
// .data(INS_out)
);
tri [7:0] MEM_ADR_out;
tri [3:0] RAM_adr_in = MEM_ADR_out[3:0];
eater_register MEM_ADR (
.clk_in(clk_in),
.en_store_in(bus_to_MAR),
.en_output_in(1'b0),
.data_in(bus),
.bus_out(),
.always_out(MEM_ADR_out)
// .data(mem_adr_bus_out)
);
// Eater RAM is "technically" synchronous, but still enables write on clk&w_en.
// However, "my RAM" *always outputs something*, and that's bad.
my_mem #(
.DATA_WIDTH(8),
.DATA_DEPTH(16)
) RAM (
.clk_i(clk_in),
.write_en_i(bus_to_RAM),
// doesn't matter
.read_en_i(),
.r_read_addr(RAM_adr_in),
.r_write_addr(RAM_adr_in),
.data_i(bus),
.data_o(),
.async_data_o(RAM_out)
);
assign bus = RAM_to_bus ? RAM_out : 8'bz;
eater_alu alu (
.clk_in(clk_in),
.en_output_in(ALU_to_bus),
.A_in(A_out),
.B_in(B_out),
.subtract_n_add_in(1'b0),
.bus_out(bus)
);
tri [3:0] PC_in;
assign PC_in = bus[3:0];
counter #(
.DATA_WIDTH(4)
) PC (
.clk_in(clk_in),
.counter_out(PC_out),
.X_in(PC_in),
.st_store_X_in(bus_to_PC)
);
assign bus[3:0] = PC_to_bus ? PC_out[3:0] : 4'bz;
endmodule
|