summaryrefslogtreecommitdiff
path: root/eater_cpu/eater_computer.sv
blob: f7f0952dcf1a2390c78d47ebd39ea3ba97ae9f19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// represents the Ben Eater 8bit computer

`timescale 1us/1us

module eater_computer(
  // clock input
  input wire clk_in,
  // current content of the bus
  output wire [7:0] debug_bus
);

/* verilator public_on */

// bus: can contain anything - multi driver, thus tri.
tri0 [7:0] bus;
assign debug_bus = bus;

wire [7:0]
      // Always-output for A (-> ALU)
      A_out,
      // Always-output for B (-> ALU)
      B_out,
      // Always-output for RAM
      // (buffered separately, since I'm re-using code)
      RAM_out,
      // Always-output for INStruction register (which is "split" into MSB and LSB)
      // (buffered separately)
      INS_out,
      // Always-output for Memory Address Register.
      // feeds into RAM, at least the LSB.
      MAR_out,
      // PC is only 4 bit, but to output to bus, we want to pad with 0es.
      PC_out_full,
      // OUT->Display output
      OUT_out
;

// PC is only 4 bit.
wire [3:0] PC_in, PC_out;

logic
      A_to_bus, bus_to_A,
      B_to_bus, bus_to_B,
      INS_to_bus, bus_to_INS,
      RAM_to_bus, bus_to_RAM,
      ALU_to_bus,
      PC_to_bus, bus_to_PC, PC_count_en,
      bus_to_MAR,
      bus_to_OUT
;

/* verilator public_off */

eater_register A (
  .clk_in(clk_in),
  .en_store_in(bus_to_A),
  .en_output_in(A_to_bus),
  .data_in(bus),
  .bus_out(bus),
  .always_out(A_out)
  // .data(bus)
);

eater_register B (
  .clk_in(clk_in),
  .en_store_in(bus_to_B),
  .en_output_in(B_to_bus),
  .data_in(bus),
  .bus_out(bus),
  .always_out(B_out)
  // .data(bus)
);

eater_register INS (
  .clk_in(clk_in),
  .en_store_in(bus_to_INS),
  .en_output_in(INS_to_bus),
  .data_in(bus),
  .bus_out(),
  .always_out(INS_out)
);

// 4 LSB go from INS to BUS
wire [7:0] INS_to_bus_interm = {4'b0, INS_out[3:0]};
// TODO: 4 MSB go to decoder, to be implemented.

zbuffer INS_to_bus_buffer (
    .data_in(INS_to_bus_interm),
    .en_output_in(INS_to_bus),
    .data_out(bus)
);

eater_register MEM_ADR (
  .clk_in(clk_in),
  .en_store_in(bus_to_MAR),
  .en_output_in(1'b0),
  .data_in(bus),
  .bus_out(),
  .always_out(MAR_out)
  // .data(mem_adr_bus_out)
);

wire [3:0] RAM_adr_in = MAR_out[3:0];

// Eater RAM is "technically" synchronous, but still enables write on clk & w_en.
// However, "my RAM" *always outputs something*, and that's not expected.
// buffer separately.
my_mem #(
  .DATA_WIDTH(8),
  .DATA_DEPTH(16)
) RAM (
  .clk_i(clk_in),
  .write_en_i(bus_to_RAM),
  // doesn't matter
  .read_en_i(),
  .r_read_addr(RAM_adr_in),
  .r_write_addr(RAM_adr_in),
  .data_i(bus),
  .data_o(),
  .async_data_o(RAM_out)
);

zbuffer ram_to_bus_buffer (
    .data_in(RAM_out),
    .en_output_in(RAM_to_bus),
    .data_out(bus)
);

eater_alu alu (
  .clk_in(clk_in),
  .en_output_in(ALU_to_bus),
  .A_in(A_out),
  .B_in(B_out),
  .subtract_n_add_in(1'b0),
  .bus_out(bus)
);

assign PC_in = bus[3:0];
wire PC_clk_neg = ~clk_in;

counter #(
  .DATA_WIDTH(4)
) PC (
  .clk_in(PC_clk_neg),
  .X_in(PC_in),
  .st_store_X_in(bus_to_PC),
  .count_enable_in(PC_count_en),
  .counter_out(PC_out)
);

assign PC_out_full = {4'b0, PC_out};

zbuffer PC_to_bus_buffer (
    .data_in(PC_out_full),
    .en_output_in(PC_to_bus),
    .data_out(bus)
);

eater_register OUT (
  .clk_in(clk_in),
  .data_in(bus),
  .en_store_in(bus_to_OUT),
  .en_output_in(1'b0),
  .bus_out(),
  .always_out(OUT_out)
);

endmodule