1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
`timescale 1us/1us
`include "my_mem.v"
module fifo #(
parameter DATA_WIDTH = 8,
parameter DATA_DEPTH = 1024
) (
input rst_i,
input clk_i,
input write_i,
input read_i,
output empty_o,
output full_o,
//output data_valid_o,
input [(DATA_WIDTH-1) : 0] data_i,
output reg [(DATA_WIDTH-1) : 0] data_o
);
localparam DATA_DEPTH_BITS = $clog2(DATA_DEPTH);
// the -1 will make sure it fits
/* verilator lint_off WIDTHTRUNC */
localparam [DATA_DEPTH_BITS-1:0] MAX_ADDRESS = (DATA_DEPTH - 1);
/* verilator lint_on WIDTHTRUNC */
// need to "count" to number *including* depth
reg [$clog2(DATA_DEPTH + 1)-1:0] r_count;
reg [DATA_DEPTH_BITS-1:0] r_read_addr;
reg [DATA_DEPTH_BITS-1:0] r_write_addr;
assign empty_o = r_count == 0;
assign full_o = r_count == DATA_DEPTH;
wire int_wr_en = write_i && !full_o;
wire int_rd_en = read_i && !empty_o;
my_mem #(
.DATA_WIDTH(DATA_WIDTH),
.DATA_DEPTH(DATA_DEPTH)
) fifo_mem (
.clk_i(clk_i),
.write_en_i(int_wr_en),
.read_en_i(int_rd_en),
.r_read_addr(r_read_addr),
.r_write_addr(r_write_addr),
.data_i(data_i),
.data_o(data_o)
);
initial begin
r_count = 0;
r_read_addr = 0;
r_write_addr = 0;
end
always @(posedge clk_i or negedge rst_i) begin
if (!rst_i)
r_count <= 0;
else if (write_i && read_i)
// nothing to do
// count stays the same
;
else if (write_i && !full_o)
r_count <= r_count + 1;
else if (read_i && !empty_o)
r_count <= r_count - 1;
end
always @(posedge clk_i or negedge rst_i) begin
if (!rst_i)
r_read_addr <= 0;
else if (read_i && !empty_o)
r_read_addr <= (r_read_addr < MAX_ADDRESS) ? (r_read_addr + 1) : 0;
end
always @(posedge clk_i or negedge rst_i) begin
if (!rst_i)
r_write_addr <= 0;
else if (write_i && !full_o)
r_write_addr <= (r_write_addr < MAX_ADDRESS) ? (r_write_addr + 1) : 0;
end
endmodule
|